If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+24w=3456
We move all terms to the left:
w^2+24w-(3456)=0
a = 1; b = 24; c = -3456;
Δ = b2-4ac
Δ = 242-4·1·(-3456)
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-120}{2*1}=\frac{-144}{2} =-72 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+120}{2*1}=\frac{96}{2} =48 $
| 5x+10(x+7)=145 | | 187+x=180 | | -4+2x=3+x | | 8b2+16b+19=5b2 | | 3b+9=10 | | 12=(8-x)x | | +4=5y+6 | | 3/c-3=1 | | -66+10x=4x+144 | | 5n-3(4n+1)=2n(4n+1) | | 3x^2-8x=-16 | | -10+p/2=-15 | | 5=3q-7 | | 12v=34 | | -3(4x+5)=0 | | 2x+3=-15-x | | 85+(6x+67)=180 | | -3h-(-12)-12h+(-10)= | | -y-4(2y+3)=15 | | 15=25+2x | | (2x+1)-4=56 | | 2(x+5)-2=24 | | -4b-6b=8-2b | | -x-15+9x=3x+2+4x | | 2(5x+1)-3x=3(2x+2) | | R/6+5r/6=2 | | 2-4=2s | | -10=4n+6 | | 3x=13+2x+1+39 | | 6x-22=4x+4 | | 12=4−4a | | 17x+8=128 |